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A one-band periodic loop of IV electrons on N sites interact by a two-body spin-independent potential,
the band and the potential restricted so that only nearest-neighbor Wannier integrals occur, but otherwise
arbitrary. The elementary excitations relative to the saturated ferromagnetic eigenstate are then found
rigorously. The nature of the excitations and the condition for the stability of the ferromagnetic eigenstate
are discussed. The excitations divide into continuum states, bound electron-hole (exciton) states below the
band, and spin-wave states. The entire energy spectrum and the electron-hole correlation functions for the
bound states are given. It is also shown that under certain conditions, the lowest-energy eigenstate among
all one-spin-flip states has S=3N and M =3N—1, where S is the total spin and M the z component of spin
quantum numbers. This result offers, therefore, a possible violation of the Lieb-Mattis theorem in the sub-

space of one-band functions for a loop.

1. INTRODUCTION

HE purpose of the present paper is to solve ex-
actly for the lowest excited states of a one-
dimensional one-band ferromagnetic metal containing
the complete two-body spin-independent interaction
between nearest-neighbor Wannier sites. In a following
paper the method is extended to three dimensions, but
the major results are already apparent in one dimension.
The problem here is very similar to the one posed by
Slater in 1937, and solved there by perturbation
theory. He approached the situation from two different
limits and inferred from this that the general excitation
spectrum would contain a band of continuum states
plus some split-off states resembling collective motion.
The exact nature of the splitting off was not considered
in detail, and his main interest in the solutions was in
the lowest spin-wave state, from which he obtained his
criterion for a ferromagnetic ground state.

In the present paper, we solve the problem exactly
for nearest-neighbor interactions and show in detail
how the split-off branches occur, their characteristics,
and that for nearest-neighbor interactions there are at
most 3 such, one of which is a spin wave, the others
very much like excitons. (For next-nearest-neighbor
interactions, there would be at most 5, and so on.) In
effect, the calculation of the present paper confirms
almost all the qualitative features of the problem as
originally suggested by Slater.

Of the many other articles in this field,? the one that
seems to come closest to a general solution for the
Coulomb interaction is by Paul.? He gave a general
equation for the energy of the one-spin-flip state in
terms of a set of 2V wave numbers, k;, but there was no
indication as to what combinations of the &’s would give
rise to what types of states. Solutions were obtained for

* This research was supported in part by the National Science
Foundation under Grant No. GP11054, and by the Advanced Re-
search Projects Agency of the Department of Defense through the
Materials Research Center at Northwestern University.

17J. C. Slater, Phys. Rev. 52, 198 (1937).

2 See, for example, E. D. Thompson, Ann. Phys. (N.Y.) 22, 309
(1963); Y. Nagaoka, Phys. Rev. 147, 392 (1966).

3 D. Paul, Phys. Rev. 118, 92 (1960).
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a special choice of the £’s, and under certain approxima-
tions, but we have found it very hard to compare his
results with ours.

The calculation of this paper starts from the ferro-
magnetic eigenstate (S=M=%N) where S is the spin
quantum number, M/ the z component of the spin
quantum number, and N the number of sites in the
loop. Our problem is worked for the number of electrons
also equal to V. From the results of the paper, it will
be seen that for certain values of certain parameters,
U, V, J, etc., the lowest-energy state in the subspace
for M =%N —1 (i.e., the elementary excitation spectrum)
has S=M+1, rather than S= M. This then is a viola-
tion of the Lieb-Mattis (ILM) theorem? which states
that in a given M subspace the state of lowest energy
must belong to S=M. Hence the ground state, accord-
ing to the LM theorem, must belong to S=0, and can-
not be ferromagnetic. Since our calculation is exact,
and the LM theorem quite general, there would seem to
be a contradiction.

It should be kept in mind, however, that we consider
only a one-band subspace, whereas the LM theorem is
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Fr1c. 1. This is a picture of Eq. (4.1). The intersections of F(E’),
the dashed lines, with F=1 give the locations of energy eigen-

values.
4 E. Lieb and D. Mattis, Phys. Rev. 125, 164 (1962). See also D.
lidz:cst)is, Theory of Magnetism (Harper and Row, Inc., New York,
965).
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general. Thus if the one-band model is #of good, there
is neither a contradiction with the LM theorem nor
any significance to our results. But if there are situ-
ations where the one-band model s good, then there
still is no contradiction with the LM theorem since we
are forced to use periodic boundary conditions to solve
the problem, whereas it is well known®:¢ that the argu-
ment leading to the LM theorem fails for periodic
boundary conditions. For this reason, we suggest that
the saturated ferromagnetic eigenstate can be a respec-
table candidate for the ground state of certain systems
under certain potentials when interband effects can be
neglected.

The Hamiltonian will be written in terms of Wannier
functions e(r—R;) centered at the sites R;. The band
Hamiltonian (no interactions) is then written

Hy= Z VijCiuTij ) (1-1)

where ¢;,' is the creation operator, ¢;, the destruction
operator for an electron in the Wannier orbital 7 with
spin o, 6=+, —. The Wannier functions do not
diagonalize the unperturbed Hamiltonian. They there-
fore have an energy spread, essentially the band

spectrum.”
For narrow bands, Hubbard® has introduced a
hierarchy of interaction terms the largest of which is

HC=UZ iy 74— (1.2)

representing the interaction of electrons of different
spin at the same site.

The effect of the U term has been the subject of a
great deal of work starting with Hubbard’s original
paper and culminating in Lieb and Wu’s exact solution
of the linear chain.® However, Slater already in 1937 had
used this term in his fundamental paper on ferromag-

® C. Herring, in Magnetism, edited by H. Suhl and G. Rado
(Academic Press Inc., New York, 1966), Vol. IV, p. 170. In the
same vein, the loop model may also be regarded as a particular
two-dimensional system, and for this reason escapes the Lieb-
Mattis theorem. .

8 In what follows, the various types of terms that appear in sec-
ond quantization of the two-body potential have arbitrary co-
efficients, e.g., U in Eq. (1.2), J in Eq. (1.3), and J’, D, and S in
Eq. (6.1). The stability of the ferromagnetic eigenstate is then
obtained by having these coefficients obey certain inequalities. It
may be thought that by so doing one is inadvertently introducing
spin-dependent potentials, and that the Lieb-Mattis theorem
would not apply for this reason. An argument against this inter-
pretation of the potential coefficients could be made as follows.
The various parameters U, J, J', D, S, have one relation among
them if the Wannier functions used in their definition are real,
namely D=J. Thus U, J, J’, and S are independent in the sense
that the integrals defining them cannot be derived one from any
of the others. Therefore, we can always imagine that a potential
is a sum of obviously spin-independent functions V;: V=¢,V;
+c2VatesVs4caVs, and then determine the four constants
¢i (1=1,2,3,4) by forcing the integrals U, J, J', and S to have their
prescribed values. Figures 12 and 15 exhibit the results of numeri-
cal calculations which exhibit a stable ferromagnetic eigenstate
when D=J.

7 See, for example, M. Bailyn, Phys. Rev. 139, A1905 (1965).

8 J. Hubbard, Proc. Roy. Soc. (London) A276, 238 (1963), and
subsequent articles.

9 E. Lieb and F. Wu, Phys. Rev. Letters 20, 1445 (1968).
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Fi1c. 2. This is a picture of Eq. (5.4) under the conditions in para-
graph (1) below Eq. (5.8), in the continuum region.

netism,! and Slater, Koster, and Statzl® in 1953 had
used it to discuss the one-dimensional case of a band
inhabited by two electrons.

Next on the list are the interactions between Wannier
functions on two different sites, from which the follow-
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F16. 3. This is a picture of Eq. (5.7) corresponding to the condi-
tions in Fig. 2, namely, where () never crosses the « axis. The
circle shows a bound state.

07J. C. Slater, G. Koster, and H. Statz, Phys. Rev. 91, 1323
(1953).
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Fi6. 4. The continuum part of Eq. (5.4) under the condi-
tions of paragraph (2) below Eq. (5.8).

.ing Heisenberg term emerges:

Hex=3%" [T (cirleicitepteitoiciici)
ij
+375@ iy —ni) (i —n;-) . (1.3)

We have separated the J@ from the J® part for
convenience in tracing the effects. There are three other
kinds of two-site interactions.!! These terms are dis-
cussed in Sec. 6. They do not alter the essential results
obtained from Egs. (1.1)-(1.3).

The Hamiltonian

H=Hb+Hc+Hex

has been used by a number of authors as a model for
understanding the magnetic properties of metallic
systems. See for example Ref. 12 and references listed
there. The calculations usually made have the advan-
tage of dealing with arbitrary spin and contain the
thermodynamics directly but have the disadvantage of
obtaining solutions via the random phase approxima-
tion or some variation thereof.

The approach used here expands the wave function
in a complete set of elementary single electron-hole
excitation states (which therefore specifies the spin) and
solves for the coefficients. This can be done without ap-
proximation.!® We do not calculate the thermodynamic
functions in this paper.

(1.4)

11 M. Bailyn, Advan. Phys. 15, 179 (1966), Sec. 1.3.3.

12 J, F. Cornwell, Proc. Roy. ’Soc. (London) 284, 423 (1965).
See also Ref. 1.

13 The authors are indebted to Professor A. J. Freeman for com-
menting on their solution and reminding them of the early work of
Slater, Koster, and co-workers. In fact, the method of approach
used in this paper is identical to that found in Ref. 10, and had the
authors of that article considered the electron-hole excitation and
included Hex explicitly in their calculations, they would have come
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In Sec. 2 the general problem is formulated, using
Eq. (1.4), and in Sec. 3 the solution is obtained in terms
of two branches 4 and B of the spectrum. Branch 4
is discussed in detail in Sec. 4 and Branch B in Sec. 5.
The additional terms needed to make the complete
Coulomb interaction are discussed in Sec. 6. Numerical
calculations are described in Sec. 7, and a summary of
results and a general discussion presented in Sec. 8.
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Fic. 5. Equation (5.7), under the same conditions as in Fig. 4,
namely, that f(a) crosses the « axis twice, but to the left of the
continuum.

2. FORMULATION

In this section we set up the Schrédinger equation
for spin £V —1 and reduce it to a set of difference equa-
tions. The one-dimensional model Hamiltonian includ-
ing nearest-neighbor spin, band, and direct Coulomb
repulsion terms, for IV sites on a circle is obtained from
Eq. (1.4). In Hp, the same-site V,; energy is set equal
to zero, and all energies are henceforth measured rela-
tive to it. The nearest-neighbor V; is called V, and be-
comes a basic parameter in the theory. Thus we deal
with

H=VY [cifcirr,etCis1,0Cio ]+ U 2 sy ~4J @0
X3 [Leirteicipr T teitencna e, ]
F3TD Y iy —ns) (iga,4—Nip1,-) -

(2.1)

As the ground state |0) we choose the case where all
the IV electrons have down spin so that J®<0. The

across the results we present here. In fact, it is a little surprising
to us that apparently no one before now has considered the elec-
tron-hole excitation from this point of view.
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energy in this state is

Eo={(0|H|0)=31NJ®. (2.2)

Since the Hamiltonian commutes with the total spin
of the system, the simplest stable excitation will be
where N—1 electrons have down spins, and one elec-
tron has an up spin. We try to solve the Schrédinger
equation (H—E) ¥=0 by a function of the form

T=3 A7,0¥s.9, (2»3)
fig

where

Wy.0=cri'co-|0), (24)

and where the Ay ,’s are constants to be determined,
but which satisfy the periodic boundary conditions

Apne=As,4,

2.5)
Az pn=A4s,. (

Substituting Eq. (2.3) into the Schrédinger equa-
tion and taking the matrix element of the result with

G(E")

|

|| “I i
ARy
T
\ | I
\‘\“l\“\ :I/:'
IRIRTR E
‘\“\\ ,I’I,’
l\‘l‘l,l/
[ I IR
RN /
l|||} | !

Two Roots Missing
———=G(E")
Fi1c. 6. The continuum part of Eq. (5.4) under the conditions
of paragraph (3) below Eq. (5.8). Notice the continuum state lost

inside the band. Correction made in proof. The arrow should read
“One Root Missing.”

respect to ¥y ,, we get a set of equations:

VI[A; 1,5t As1,0—A501—A 7 411]
FTE@6;,0(A r41,001+ A p1,0-1)
+3T D (85,041 8711,0)A 1,

—Ubds,4As,,—FE'A4;,=0, (2.6)

where

E'=E—E,«—U+2J®. (2.7)
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In Eq. (2.7) both indices fand g run from 1 through N.
There are altogether V2 such equations. To solve these

equations, we try solutions of the form
Ay,=expGK(f+)Bs,(K), (2.8)
where
K=mn/N, n=1,2,...,N 2.9)
and where the Fourier transform of B, is
B,(K)=N"'3_ bu(K) exp[ik(f—g)],  (2.10)
%
r=—2N+1,...,3N, (2.11)

where N is assumed even.
In order for the A4;, in Eq. (2.8) to satisfy the

boundary conditions of Eq. (2.5), we need for each K
[i.e., for each n, from Eq. (2.9) ]

B.in(K)=(—=1)"B,(K). (2.12)

To accommodate this condition, we require that the %

values used in Eq. (2.10) must depend on whether # is
odd or even in the following way:

k=N"12zm
— N2+,

m=1,2,..., N,
m=1,2,...,N,

n even

7 odd.

With this choice of K and %k values, we have a well-
defined transformation to center of position, 3(f+g),
and relative position, f—g, coordinates preserving the
periodic boundary conditions. (For an analogous dis-
cussion, see Ref. 4, p. 140.) Hereafter, we shall not
specify whether # is odd or even, but it will be under-

(2.13)
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Fic. 7. Equation (5.7), under the same conditions as in Fig. 6,
namely, that f(e) crosses the « axis twice, once below and once in-
side the continuum. The second zero occurs right where the con-
tinuum state is missing in Fig. 6. The lost state there is compen-
sated by an additional bound state in this figure.
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stood that the selection in Eq. (2.13) is always implied.
We write from now on B, and b; instead of B.(K)
and b,(K), respectively.

Putting Eq. (2.8) into Eq. (2.6), and simplifying, we
get

21V sinK(Bry1— B,—1)+8,,0(2J ¥ cos2K—U)B,

+17@(5,1+8,1)B,=E'B,. (2.14)

For each of the NK’s, Eq. (2.14) is a set of IV difference
equations, 7= —3N+1, ..., #N. The problem is now
to solve these equations.

3. GENERAL SOLUTION

In this section we obtain the general solution of
Eq. (2.14). Let us first define a Fourier transform of B,

N
br=>_ B, exp(ikr),

r=1

3.1)
B,=N-13 exp(—ikr)bs.
%

Multiplying Eq. (2.14) by e®" and summing over 7,
we find

be=[3J @ (e*B1+e *B_1)+nBoJ(E'—Ex)™ (3.2)
and from Eq. (3.1).
B,=N"1 Z I:%](z)(e—ik(r—l)Bl+g—ik(r+1)B_1)
k

+ne=#ByJ(E'—E)~t, - (3.3)

where
n=2J%¥ cos2K—U ,

. (3.4)
E;=4V sinK sink.

The Ej, are in fact the unperturbed (U=J®=J &) =()

excitation energies.
For r=1, 0, —1, Eq. (3.3) yields three homogeneous
equations in the three unknowns B_i, By, Bi:

Bi= %](')MB1—17'ZJB()+ %J(Z)wB_l s

By=%J @uB1+nquBo—3J @vB_1, @.5)
B_1=3J@wBi+nBot+3J @uB_y,
where ’
w=rr=—3 (E'—Ex),
N &
1 )
o= —vF=— X (B —Ei)le®, (3.6)
N &

1
w=w*=—73 (E'—E)~%e*.
N &

The determinantal equation for nontrivial roots of
Eq. (3.5) can be set up, multiplied out, and without

CHEN AND M.
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Fic. 8. The continuum part of Eq. (5.4) under the conditions of
paragraph (4) below Eq. (5.8). Notice the continuum state lost
and the continuum state gained.

difficulty reduced to the product

FG=0, (3.7
where

F=17®(u+w)—1=0 3.8)

represents branch 4 of solutions, and
G=3TD{n(u—uw+2v)+w—u} —qu+1=0 (3.9)

represents branch B of solutions.
It can be shown that =0 when substituted into
Eq. (3.5) leads to

By=0 B4 —B_,W=0, (3.10)
whereas G=0leads to
ByB£() BB =_B B)..., (3.11)

This symmetry is rather peculiar: The relative wave
functions B, are either antisymmetric or symmetric
upon # <> —r provided 70, but if =0, the symmetric
one vanishes. There will be one exception to Eq. (3.11):
the “exciton” state for K=0 in branch B will have
Bo=0. (See Ref. 14.) :
Some insight into why this type of symmetry occurs
can be gained by going back to Eq. (2.14) and setting
J@=J@=[=0. The equation then reduces to a
very simple one, and it is easily seen that the Bloch
function for the relative distance 7, exp(—ikr), is a
solution with energy Ei. Now the usual symmetry and
antisymmetry would occur if E_,= Ey, but this is not
14 The bound exciton state for K=0 (in branch B) is the one
exception. In this case, only By and B_; are not zero, so Eq. (5.13)

cannot be used. Whenever B,#0, (i.e., in all other cases), Eq.
(5.13) can be used.
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the case!® [see Eq. (3.4)]. Rather, E_;= — E;. But with
K as a fixed parameter the same energy is obtained for
k and m—k. It can be shown that two combinations of
exp(ikr) and exp(i(m—Fk)r) that satisfy the boundary
conditions are
(A =47 gin(b—1
B, t sin(k—%m)r, (3.12)
B, B =ir cos(k—3m)r.
These functions do have the peculiar symmetry in-
dicated in Eq. (3.10) and (3.11). Notice that if the
factors 4" were not there we would have the usual sym-
metry, but by the same token, we would not have
BrE :!:BT+N-

4. SOLUTION OF BRANCH 4

Here we describe in detail the nature of the solutions
of branch A obtained by setting #=0. By definitions
of # and w, Eq. (3.6), the equation (3.8) becomes after
some slight manipulation and definition of F:

F(EN=%3J®(u+w)
J @ cos?k

=N-1Y — =1.
k E'~Ek

(4.1)

Let us examine F(E'). If J® <0, then for each par-
ticular Ey, except the one where cosk=0, i.e., k=1,
F(E’) suffers an infinite discontinuity as shown sche-
matically in Fig. 1. The dotted lines represent the func-
tion F(E’), the vertical lines represent discrete values of
Ey’s. The intersections of dotted line with F=1 are
the solutions of Eq. (4.1) and give the energy eigen-
values. There are altogether NV —1 such roots; 3N —2
lie in the “continuum’ (or band), and another one lies
outside the continuum. The latter is of special interest.1®

To see the features of the state below (or above) the
band, we convert the sum in Eq. (4.1) to an integral
(justified by the fact that the solution of E’ lies out of
the range of Ey)

N1y =(Q2x)! / dk 4.2)
* —7
and introduce the abbreviations
a=F'/t, (4.3)
= (4V sinkK). 4.4)

The continuum region is then given by —1<a<1, and

18 This does not violate time reversal symmetry, because there
are two wave vectors involved, £ and K. If the energy in Eq. (3.3)
is called Fy x then E_j k= Er k. What is under discussion here is
that E_t,x=—FEr k.

16 The splitting off of states from the continuum is analogous to
the splitting off of bound states in the impurity problem. See, for
example, G. Koster and J. C. Slater, Phys. Rev. 95, 1167 (1954);
96, 1208 (1954).
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F16. 9. Equation (5.7) under the same conditions as in Fig. 8,
namely, that f(«) crosses the « axis twice, both times inside the
continuum. The lost and gained continuum states in Fig. 8 occur
where the zeros of f(«) appear in this figure.
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Eq. (4.1) becomes

cos?k

u

1 T
F(E)=J@g1— / k

s a—sink
T et @@= =1, a<—1 (45)

where for now we have assumed £>0 and looked for
roots a< —1.

In Eq. (4.5), the factor a++4/a?—1 is always less
than 1 in magnitude for a< —1. Thus there can be a
solution to Eq. (4.5) only if |J®)/¢| satisfies

|T@/E|>1. (4.6)
If this is satisfied then the solution is
a=3J @14 (J2/§)~2]. (4.7)

The energy is obtained using Egs. (4.3) and (2.7), and is
written below in Eq. (8.2). Equations (4.6) and (4.7)
are also true for £<0.

Next let us consider the correlation function |B,|?
which is proportional to the probability that the elec-
tron-hole pair is separated by a distance ». From Egs.
(3.3) and (3.10), integrating over % as before for the
solution below the band, we find

By =0,
BT(A)z(_i)r—l(

By, r>1. (48
u<z>/z|> ’ (*8)

“Thus when Eq. (4.6) is satisfied, the function |B,|?
decreases exponentially with increasing 7, and the



3036 J.

Branch A Branch B

N N
’ I [ | ’ N
A i T~
Z N
1\,/ \
U+21Jml
-1 +! +1
Eo - g .
sink E=Eo  sink
uU=10, J=V=1I — —— Excition States
J=D=8=0 —— Spin Wave States

Fi16. 10. This is a schematic plot of a typical energy versus sinkK
spectrum; the shaded region indicates the spread of continuum
states, the dashed lines indicate the exciton states, and the solid
curve represents the spin-wave spectrum. This summarizes the
results of Secs. 4 and 5. Correction made in proof. The J on the
bottom line should be a J”.

state below the continuum has the true physical
significance of a bound state (electron bound to hole).
As |J@/g| — 1, Eq. (4.8) shows that the wave func-
tion becomes spread out over the whole crystal, which
is just the characteristic of a continuum state. If
| J@®/&| becomes =1, then the conversion from a sum
to an integral as in Eq. (4.2) is no longer valid. The
bound state has then reverted to an ordinary band state
but occupying the lowest energy of the band.

Where a bound state does exist, it has zero probability
of having the excited electron over the hole. This state
does not correspond to the originary spin wave, and is
not a generalization of one. It is a kind of exciton ex-
citation below the continuum, and we shall call it by
this name.

5. SOLUTION OF BRANCH B

In this section we investigate the solutions of branch
B. From Eq. (3.9) the dispersion relation for branch B is

G(E)=1—G=nu+JD%(u—w)

—1T@p(u—uw+202)=1. (5.1)

By definitions of #, v, w, Eq. (3.6), G(E') can be re-
written as

J @ sin%+19

GE)=— T —
E —E;

N &
1 3J @y (sink —sing)? .

N? :;q (E'—E(E—Eg)

CHEN AND M.
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After some manipulation, this reduces to

1 _ 2wxsin%—2xy sink+y
GE)=—% =
N & a—sink

1, (5.2)
where
x=3J@/E y=q/E, 9=2J@cos2K—U, (5.3)

and where « and £ are defined in Egs. (4.3) and (4.4).

Let us now investigate the general feature of G(E’)
as we have done for branch 4, and restrict ourself to the
cases J <0, and 9<0. (<0 is true as long as U is
large; and J )< 01is the ferromagnetic case for which the
ground state is designed.) The other cases can be treated
in a similar fashion without much alteration. Thus we
will have either x<0, y<0, or x>0, y>0.

Equation (5.2) can be rewritten, after further manipu-
lation, as follows:

G(E) ~1=ge)N"* £ (esink)

—2x(a—az)=0, (5.4)

where
g(@) =2x0?—2xya+y=2x(c—ai1)(@—az), (5.5)
where
ar="3y[14(1=2/xy)'"],
ax=3y[1—(1—-2/xy)**],
az=y(1—1/2xy) .

We next look for states whose energies lie below the
band. When £>0, then a<—1, and when £<0, then
a>1 correspond to the regions where these low-lying
states must lie. We get from Eq. (5.4) for these two
cases, converting the sum to an integral over %,

J@)=(a—a)(a—az)(a—az)™

(5.6)

=—(2—=1)12..a<—1, (5.7)
f@)=(a—a) (a—as) a—as)""
=4 (a2—1)2 . .a>1. (5.8)

It can be easily proved for <0, y<0, that as< a1 <L ay,
and for >0, y>0, that a;> 1> as. Further, for a given
pair of x and y, Egs. (5.7) and (5.8) cannot have real
solutions in the allowed « ranges simultaneously.

Let us now look at the qualitative aspects of the solu-
tions in terms of the roots, a1, as, of g(a). Further let us
choose £>0 (the other case £<0 gives identical results).
This means x<0, y<0. The following possibilities occur.

(1) gla)=0 has no real roots. Since x<0, g(a) <0 for
all values of a. A qualitative graph of G(E’) versus E’
in and near the continuum, from Eq. (5.4) is shown in
Fig. 2, and a corresponding graph of f(a), Eq. (5.7),
is shown in Fig. 3. In this case there is only one solution
to G=1 below the band, shown in the circle in Fig. 3.

(2) gla) has real roots, but both lie below the band. The
function g(e) is less than zero over the entire interval
(—1, 1), and there is only one solution to G=1 below
the band. The situation is also illustrated by Figs. 4
and 5.
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(3) gla) has only one root, as, lying in the band. It
follows that g(—1)>0. The function g(a) changes sign
at ag; let as=sinko+e, e=A(27/N) cosky and 0<A<1,
for some particular &¢ in the band. A qualitative graph
of G(E') is shown in Fig. 6. The minimum of the turn-up
portion of G(E’) can be shown to be greater than 1.
The proof is given in Appendix A, hence one solution
to G(E')=1 inside the band is missing and there is an
extra solution to G=1 outside the band. This means
that two roots of G=1 lie below the band. Figure 7
illustrates the graph of Eq. (5.7), and the circles show
the two roots below the band.

(4) Both roots of g(a), a1 and as, lie inside the band. A
graph of G(E') is shown in Fig. 8. There is a turn-up
portion of the G(E’) curve, and also a turn-down por-
tion. It can also be shown that both the minimum of the
turn-up portion and the maximum of the turn-down
portion of G(E’) are greater than 1, and hence one state
inside the band has shifted its position. There is only
one solution to Eq. (5.7). Figure 9 illustrates this
situation.

From the graphs, we can see that there is always one
solution lying below a3, and whenever there are more
than one solution, the extra root to Eq. (5.4) produced
by the entry of a; into the band lies close to the band
edge. The lower root is a generalized spin wave, and the
other one, when it occurs, is an exciton similar in many
respects to the bound state of branch A.

The root of Eq. (5.7) which lies below as will be called
a,. The index symbolizes that it is a generalized spin
wave. Since |az| Is in general a large number, and
|a| > |as|, we can use the following approximation'? to
simplify Eq. (5.7):

1
(aﬁ—l)l/z%——as(l——g—), a<l—1. (5.9a)

g

[If we do not use Eq. (5.9a) we could solve Eq. (5.7) ex-
actly, but the general solution is extremely com-
plicated.] Equation (5.7) becomes, with use of Eq.
(9.4), a quadratic rather than a cubic equation:

a2 — (x+y)as+ (xy—3)=0.

One root of this equation does not satisfy a<as. The
other is!®

a,=3{r+y—[(x—y)*+2]"}=y—[2(x—y) ™. (5.9b)
From Egs. (2.6) and (5.3) we get

Ey= Eot(—2J @427 cos2K)
—8V2sin?K[U — (27 @ cos2K—3T @) 1. (5.10)

17 Using Eqgs. (4.3), (4.4), and (2.7), we get a=(E—E—U
—2J)/4V sinK, where we set J@»=J@=—J_ It can be proved
rigorously from Eq. (5.7) that as K — 0, the lowest root E; — E,.
Thus as — 0, and the approximation in Eq. (5.9) is justified. As
sinK — 1, however, we must content ourselves with considering as,
which in this limit approaches —1U/V —4V/J+%J/V. One way
to get this large in magnitude is to set U>>V, and U>2J. Under
these conditions, Eq. (5.9) is approximately valid for all K.

18 Here the approximation is |y—ax|>>2. Once again this can be

3037
E-Eq u=10,d=1,J’,v=1,D=0,5=0
xxxx J'#0
ocooo J'= |.0
aaaa J'=20
\x —— Band Edge

0.5 1.0
sin® K
F1c. 11. In this figure, the lower edge of the band, the excitons,
and the spin-wave spectrum are plotted versus sin?K for fixed U,
J, V, D,and S and variable J'. See Eq. (6.14) and Sec. 7. The band
edges are indistinguishable for the different J”’s and the spin waves
are almost so.

The first term is the F-eigenstate energy.”® The sec-
ond term is the ordinary spin-wave energy ~1—cos2K.
The third term is essentially negative and represents
the loss in kinetic energy allowed by having one electron
with up-spin (for in the F eigenstate this electron had to
sit on top of the down-spin Fermi distribution). This
last term is the greater in magnitude the greater the
Bloch bandwidth (~V) is. If V gets sufficiently large,
E, will become lower in algebraic value than E,, i.e.,
the system prefers to be in the excited state, and the
ferromagnetic eigenstate is unstable. The criterion
for this to happen is, setting J@#=J@=—J and
setting the denominator in Eq. (5.10) equal to its
smallest value U—%J,

V>[3J(U—$J)]V2, ferromagnetic eigen-

state unstable, U large. (5.11)

This is then a criterion!® for the instability of the ferro-
magnetic eigenstate. Further, if /=0, the ferromagnetic
state can never be the ground state no matter how large
U is: This can be seen directly by substituting x=0
in Eq. (5.2). The result is a=—[(1+y)2]% i..,
E=U[1—(14y?)"2]<0, and the ferromagnetic eigen-
state energy is zero.

Now let us calculate the correlation function for the
bound states of branch B. Inserting Bi= —B_;, Bo#0

shown to be rigorously valid in the limit K — 0, and approximately
valid for all K provided U>V and U>2J. Thus Egs. (5.10) and
(5.11) will be valid under these conditions.

19 The term “F eigenstate” used hereafter actually denotes the
saturated ferromagnetic eigenstate, |0).
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into Eq. (3.5) we get
v

=——+———B,. (5.12)
37 @ (u—w)—1

Substituting Eq. (5.12) into Eq. (3.3), and changing the

summations over % into the corresponding integrals, we

have the following result!4:

| B,| 2= | Bo| La+(2—1)12] | a<—1, r>0. (5.13)

This represents electron-hole bound states with wave
functions having a peak at r=0, and falling off ex-
ponentially with increasing 7. (Contrast this with the
exciton of branch 4 which had By=0, but otherwise fell
off exponentially.) For the exciton here, the only re-
striction is that a< —1, i.e., that it lies below the con-
tinuum. This criterion ends up being very similar to the
one for the exciton of branch A4, and is written out in
Eq. (8.4) below. There may be a cutoff here also.

The spin-wave state by definition has the lowest root
of Eq. (5.7), and always lies below the exciton; and in
fact at K=0, the spin-wave energy must be zero. So at
least a part of the spin-wave spectrum will always ap-
pear. The higher K part of the spectrum may, however,
merge with the continuum if ;= —1, where a; is ob-
tained exactly by solving Eq. (5.7), or approximately?8
from Eq. (5.10). In the latter case the merging occurs
when p
U 47" sinR2K

K= S , (5.14)
4(V+J cosK) —J V+4J cosK

provided the right-hand side is less than 1. Otherwise
the merging will not occur, in this approximation.

Finally, it can easily be shown that when one operates
on the wave functions for these excitations with 2,
the result is

SY=EGN-1)GENW

for all states except the one K=0 in the spin-wave
branch. For this case

SH=3NGEN+1Y,

This follows because of the form of the wave function,

K =0 spin wave.
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which in fact for this state has only one component By.
Thus for certain valuesof U, J, etc., the state of lowest
energy is the K=0 state of the spin-wave branch and
has S=3N which equals M1, since M =N —1. Thus
in the subspace M =%N —1 the lowest-energy state has
S=M-1. In the proof of the Lieb-Mattis theorem,! as
mentioned in the Introduction it is necessary to estab-
lish that the state of lowest energy of a subspace of given
M has S=M. Thus we have here an apparent dis-
agreement with the LM theorem. For a fuller discussion,
see the Introduction.

6. COMPLETE COULOMB INTERACTION

The object of this section is to analyze the effect of
those two-body electrostatic terms that are not in-
cluded in the Hamiltonian of Eq. (1.7). A general
classification of the two-body terms can be found in
Ref. 8. Those terms that are not included in the
Hamiltonian of Eq. (1.7) are the following:

Hy=Hp+Hp+Hyg

N
=J" 2 (i tni, ) (iga, g mig )
i=1

N
+D 3 (cileipaoiteopr—Fciteiaci_teis )

=1

N
+S 2 {ciateapr i (ni—Fnigr, ) Feiytei o
i=1

X (s —+niq,) teiteipr, (i nipn,y)
Fcifei1,(nigp+ni1,4)}.

The index D stands for double-hopping, .S stands for
semihopping, and J’ indicates that this term will have
an exchange effect. We treat J/, D, and S as new
parameters in the problem. The new ground-state
energy is

6.1)

E/=iNJ®O4NJ'. (6.2)

Proceeding as in Sec. 2, we find now instead of Eq. (2.6)
rather

VIA vt Arne—As1—As,001]=Uds, 045, o+ T 87, 0(A py1,001+ Ay 1,0-0)+ GT O —T") (87,0414 67.5-1) A 1.
—D[ﬁf,g_y‘l f+1,9-11 5f.g+1A f—l,a+1]+ S(A f+1,a+Af—1,a) _S{ (5f.a+ Bf.v—l)Af+1,a+ (5f,a+ 5fm+l)Af—1,a
+(0s.087,0-0)A 1,01+ 01,0+ 81,001) A gupr1} = E'A sy, (6.3)

where E'=E—E)/—U+2J®,

Following the same procedure as in Secs. 2 and 3 and defining

8§=2S5 cosK,

=4[ (V+S5)%sin?K+4.S? cos? K ]V2,
S cosK

(6.4)
(6.5)

sing=

[(V4S)%sin?K+S2 cos?K V2 ¢

J'=1/2)J@—J ",

6.7)
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we are led to

(J"e?*—8— De~*) By+(n—28 cosk) Bo+(J" e~ —8—De'*) B_,

3039

br=

which now replaces Eq. (3.2). Defining

, (6.8)
E'—¢sin(k+ )
1
u=N"1y —— (6.9)
k E'—Esin(k+ )
e—‘ik
X, =N-1Y —— =gin, 6.10)
¢ % E'—¢sin(k+¢) (
efzilc
V,=N-1 =etivy (6.11)

% E'—¢tsin(k+ )

where #, v, and w are defined in Sec. 3, we are led to three equations [just as we previously were led to Eq. (3.5)]

for which the determinantal equation is
uJ"—8X,—DYV ,—1
A=|J"X *—u8—DX,
J'Y ¥ —8X *—Du

In order to investigate the bound states, we replace the
k sum by an integral. Then using

x=J"/t, y=u/t =8/t d=D/E a=E'/E (6.13)
Eq. (6.12) reduces to
1/(@—1)"g(a0)+h(e)=0, a<—1 (6.14)

where

g(a) =8(x2—d?)a®—[8(x?—d?)y+165%(x—d)+4d Jo?
+ [4xy+422—4(x2—d?) ]
+[4(x2—d%)y+ 822w —d)+2d—y—2x], (6.15)

h(a) =8(x2—d?)a?—[8(x2—d?)y+1622(x —d)+4d Ju
+[4xy+422—17]. (6.16)

Numerical solutions to (the square of) Eq. (6.14) are
discussed in Sec. 7.

7. NUMERICAL CALCULATIONS

In this section, numerical results are presented in the
form of the Figs. 10-15. Each curve represents a com-
puter solution of Eq. (6.14) with a given set of input
parameters {U,J,J',V,D,S}; here we consider only the
ferromagnetic case and let J®)=JE0) = —J<0.

The object of this numerical study is to show the effect
of various terms on the energy spectrum of the low-
lying excited states, particularly the spin-wave states.

In Figs. 11-15 the energy spectrum is plotted as a
function of sin?K, and the lower edge of the band of
quasicontinuous states is also shown in each figure.
For each value of sin?2K the separation between the
center of the band and the F eigenstate is U+2J, and
the half-width of the band is ¢ ,where

£=A[(V+S)? sin?K+.52 cos?K J1/2.

71X ,—8(u+Y,)
m—8 X +X,)—1 J'X,—8$u—DX,* =0.
1 X *—8(u+Y,*)

J"Y ;—8X ,—Du
(6.12)
J"u—8X *—DY *—1

Note that if sin?K=0 the band has a half-width
£o=4|S| 0. The figures in general bear a striking re-
semblance to Slater’s in Ref. 1.

Let us first consider the exciton levels. The following
is observed:

(i) For D=0, the two exciton levels lie very close to
each other (Fig. 12).

E-Eo
U=10,J=1.0,J'=1.0,V=1,S=0
xxxx D=0
oooo D=1|
aaaa D=2
—— Band Edge
X
1of" X%
°°°°eg
[}
1888824, , R ° oT%
a
A 5 4, A
5L
s &
. 8
X L]
N ]
l..-“
O&l _ i 1
05, 1.0
Sin” K

Fi16. 12. Similar to Fig. 11, except that J' is fixed and D varies.
Again the band edge is indistinguishable for the various D’s, and
the spin waves almost so.
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E-Ep U=10, J=1.0, = 1.5, V=1, D055 portion of the spectrum and enhance the nonlinearity
xxxx S=04 of the spectrum.
o000 S= 1.0 (vi) For relatively small U (Fig. 15), all the observa-
anaa S:ngizs dge tions above are still valid; but the effect of S and the

a
A X

A X

A x X

MQQX
okadieoo o o © o 0 o o
0.52 1.0
Sin~ K

Fi16. 13. In this figure, the values of U, J, J’, V, and D are fixed
with the S value varying. As the value of S varies, the band edge
also shifts, so there are three distinct band edges with correspond-
ing S values indicated. Notice the dip the band edge and spin
waves take for large S.

(ii) The effect of J’ is additive to the effect of 1J
(Fig. 11); this can also be seen analytically from
Eq. (6.3).

(iii) The effect of D is to split the two exciton levels
(Fig. 12). This can be seen from Egs. (6.14)-(6.16) for
S=0 by factoring Eq. (6.14) into two branches again.
The one branch contains D in the combination
37 @+ D the other in the combination 1J® —D.

(iv) The effect of S is to push the exciton levels and
lower edge of the band downward, the exciton levels
finally merging into the band (Fig. 13).

For the spin-wave spectrum, the following is

observed:

(i) E;—E;— 0 as sin?K — 0; this can be proved
analytically.

(ii) For relatively large U (Figs. 11-14), and small
sin?K, the spin-wave spectrum is approximately linear
in sin?K, the departure from linearity increases as sin?2K
increases.

(iii) The effect of J’ is to turn the spectrum slightly
downward (Fig. 11).

(iv) The effect of D is to turn the spectrum slightly
upward (Fig. 12).

(v) The effect of S and V are similar; this can be seen
by comparing Fig. 14 and Fig. 13. Increasing either one
of them or both tends to decrease the slope of this linear

nonlinear behavior is more clearly manifested.

(vii) It is possible for the spin-wave energy to be-
come smaller than Eo at the far end of the spectrum by
the downward turn for large K becoming sufficiently
large (Fig. 15).

8. SUMMARY

In the previous sections we have set up and solved
the Schrédinger equation for the electron-hole excita-
tion on a one-dimensional ferromagnetic ground state
including the complete nearest-neighbor Coulomb inter-
action. The spectrum consists of three types of excita-
tions: band, exciton, and spin wave, for each value of
K, the momentum of the center of the electron-hole
combination. Let us here review the general features of
these solutions, for the case where S=D=J'=0. In
this case the spectrum splits into two branches 4 and B
as shown in Fig. 10.

First of all, the band states are centered, for every K,
at a distance U+-2|J| above the ground state E, of the
ferromagnetic state. The range of energies in the band
for each K is —1<a<1, or 8V sinK, and the energy of
the “band” at K=0 is exactly U+2|J@| from the
F-eigenstate energy. (When S is included, the band at
K =0spreads out.) The bands may not only have a state
dropped off from the bottom (or top) but may have a
state removed from the middle, or shifted from one part

E - Eo
U=10, J=1.0, J'=1.5,V, D=0.5, S=1.0
xxxx V=02
ocoo  V=0.4
asaa V=1.0
—— Bond Edges

‘xﬂ‘XNx“ v=0.2

V=0.4
5k
/th.O
X
X
x X o ©
x 5 ° °
5 -3
&556
ObxBanps & & 4 & & 8 &
05 1.0

. 2
Sin~ K
F16. 14. Similar to Fig. 13, except that here it is V that varies.
Notice the dip as V increases, just as in Fig. 13 for S.
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to another part, as shown in Figs. 6 and 8. This is a
rather peculiar feature of the specfic problem here, and
as far as we know has not appeared before in any prob-
lem of a related type. The split-off states have a bound
electron-hole character. In branch 4 they have a mixed
symmetry ¢4(0)=0, and ¢4(r)=-+y¢4(—r), whereas
in branch B they have a mixed symmetry y#(0)540,
YB(r)=—yPB(—r).* The origin of this was discussed
briefly at the end of Sec. 3. The states of lowest energy
of branch B form a spin-wave spectrum. The other
split-off states in branches 4 and B are excitons.

The exciton states cling rather closely to the band
and, for the signs of the parameters we have chosen, lie
just under the band. They may appear both in branch
4 and in branch B. In branch 4 they appear provided

|2V sinK|<|J®|, branch 4 (8.1)
and have energy [see Eq. (4.7)]
E=Ey—$J©+V—8V2|J®|sin’K
branch 4. (8.2)

The condition in Eq. (8.1) may be satisfied for some K
but not others. (If J®)=0, it can never be satisfied.)
Thus there may be a cutoff of the exciton branch, as
actually shown in Fig. 10. The correlation function for
the branch A4 exciton is [see Eq. (4.7)]

Bo=0, |B,|2=(16V2J®=2sin?K)", branch 4  (8.3)

where |B,|? is the probability of finding the electron-
hole separated by a distance 7. Once beyond r=0 the
probability |B,|? decreases exponentially with 7,
indicating ‘a true bound-state character. Notice that
the exciton state also has an energy gap ~ U from the
ground state.

A similar kind of exciton state will also occur in
branch B provided as> —1 (see Sec. 5), which means
provided [see case (3) below Eq. (5.8)]

|J®|> |2V sink

| ~|2VsinK]|,
144V sink

branch B. (8.4)

This condition is very similar to Eq. (8.1) for the branch
A exciton, and there can be a cutoff in the spectrum here
also. The energy is more difficult to determine, but it is
one of the solutions of a third-order algebraic equation,
Eq. (5.7) which we shall not write down. It can be seen
that the energy is of order U greater than the F-eigen-
state energy. The correlation function for the state is

| B,|*= | B[ [ar(ar~1)"*]r, a<—1, a>1,
branch B (8.5)

where o is the intermediate root of Eq. (5.7). Once
again there is an exponential decay for the probability
of finding the electron near the hole.

Finally there is a generalized spin-wave state, ob-
tained as the largest (in magnitude) root of Eq. (5.7).

3041
E - Eo
U=3, J=1.0, J'=1.5,v=10, D=10,S
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0000 S=02
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Fic. 15. This figure has the same description as Fig. 13, but with
relatively smaller U. One can see from this figure how the spin
wave and exciton spectrum can easily go below E at the far end of
the spectrum as .S increases. This is discussed at the end of Sec. 8.

There are no conditions on this excitation: It always
occurs. Its energy is approximately!s

E,=E\+(—2J@42J @ cos2K)
8V?sin2K
U—27@0 cos2K+34T @’

spin wave (8.6)

and when V=0 it is clear that the energy is of the spin-
wave form.

We see that the spin-wave states and the center of
band are separated by a gap of magnitude U+2J. This,
for large U, ensures the stability of the spin-wave states
even for small J®). But if U is kept fixed and |J®|
increases the “exciton” spectrum in branch 4 comes
down and may eventually overlap with the spin-wave
states.

The final question to raise is the problem of stability
of the ferromagnetic eigenstate. We can see from Eq.
(8.6) that when V increases, the V2-dependent negative
term in the (E,—E,) expresison may overcome the
positive spin-wave term, and hence yields the result that
the generalized spin-wave states have energy lower than
the ferromagnetic eigenstate energy, which implies that
the latter is not stable. The criterion of having a stable
ferromagnetic eigenstate would then bel®

V<[3I(U—5)T1. 8.7)
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A criterion of this type was found by Slater! and by
Paul.?

Also, the results of Sec. 7, when S, J’, and D are
included, indicate that the spin-wave branch may cross
zero at sinK =1 before the slope goes negative at K=0.
This is then another criterion for the stability of
the F state. In order to give some expression for this
criterion, we can rewrite Eq. (6.14) in terms of E. It
turns out to be of the form AE*+BE*4CE*4QE
+R=0. If E=0 at sinK=1, then this equation can be
satisfied only if R=0 (and conversely, this is a necessary
condition). If for sinK=1, E is slightly positive (ie.,
ferromagnetism possible), then the criterion becomes

R/Q<0, (8.8)

The expressions for Q and R are very long and tedious
to derive. If .S is set equal to zero, Eq. (6.14) can be
separated into two branches 4 and B again. For branch
B we find

for stability.

R=64{2V?(2V2+2J2—Ja—2Jx)+J*a+x)}, (8.9)
Q=232{Jx(a+x+2J)—V*a+2x)}, (8.10)
where
a=U+27,
x=—3J—J'+D.
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APPENDIX: TURN-UPS AND TURN-OVERS

The object of this Appendix is to prove that the
minimum of the turn-up and the maximum of the turn-
over portions of the G(E') curves of Figs. 6 and 8 lie
above the value 1. The proof starts from Eq. (5.4):

G(E)=g(@)S(a) —2x(a—y),
S(a)=N"1E(a—sink)™1.

Let there be zeros of g(a) at i, as. Then the statement is
certainly true af these zeroes. For at a=a; (i=1, 2)

(A1)

G(E{)=2x(a;—y). (A2)
Using Eqgs. (5.6) this gives
2 1/2
G(E,-’)=xyl:1:b(1— ——) ] , 1=1,2  (A3)
xy
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and it is easy to prove that
G(E{)>1 (A4)

using the fact that z=2/xy must be <1 in order for the
root to be real [see Eq. (5.6)].

It still remains to be proved for the root ez which lies
in the interval [sinkq, sin(ko+A)], say, where A= 2r/N,
that G(E') lies above 1 in this entire interval [i.e., the
minimum of G(E') does not necessarily lie at ay].

First of all, the variation of the term 2x(e—¥) in this
interval is of order 1/N and this term may be regarded
as being a finite value above 1 in the entire interval.

It must then be shown that the other term, gS§, is
either of order 1/N in the entire interval and hence does
not affect the value obtained at a; or else is positive. We
know that .S goes from + « to — « in the interval, and
has a zero at, say, aoin the interval. Further, a; is also in
this interval. Without loss of generality, let ao be to the
left of ae. Thus gS is positive on the edges of the interval,
i.e., to the right of a; and to the left of o, in the interval.
In these edge regions bounding the interval, therefore,
the term gS increases G(E') positively, and G(E')
therefore remains above 1. But for ay<a<as, gS is
negative, and can conceivably cause G(E’) to drop below
1. However in this region gS'is of order 1/N.

To see this, divide S into two parts S,+S», where .S,
contains a few terms around k¢, and S, contains the
rest. Sp can be evaluated by conversion to an integral,

1 ko8 ™ dk
Sp= _[ / + f ]———20(5), 31 (AS)
2rlJ) kots Jor—sink

where 6 represents an interval around k¢. This integral
is finite (is zero, in fact, if §=0), and gS5 is negligible
since g is of order 1/N.

The other part S,, containing just a few terms, can be
estimated and it is also finite, since we are not close to
the asymptotic region. Once again multiplication by g
gives a contribution of order 1/N, and the assertion is
proved.

Of course the obverse of the assertion of this Appendix
is that when a state is lost from the band, it must occur
below (or above) the band. We do not include it here
but a quite rigorous proof can be made starting from
Eq. (5.7) showing that roots do appear below (or above)
the band whenever states are lost in the band. Rather
than include the mathematical details, we have provided
the figures, which show more vividly how these roots
transfer from in to out of the band as the roots of g(a)
move into the band.



